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Am J Physiol Gastrointest Liver Physiol 318: G1034–G1041, 2020. First published
April 20, 2020; doi:10.1152/ajpgi.00196.2019.—Visceral hypersensitivity of the
lower gastrointestinal tract, defined as an increased response to colorectal disten-
sion, frequently prompts episodes of debilitating abdominal pain in irritable bowel
syndrome (IBS). Although the pathophysiology of IBS is not yet fully elucidated,
it is well known that stress is a major risk factor for development and acts as a
trigger of pain sensation. Stress modulates both immune responses as well as the
gut microbiota and vice versa. Additionally, either microbes themselves or through
involvement of the immune system, activate or sensitize afferent nociceptors. In
this paper, we review current knowledge on the influence of stress along the
gut-brain-microbiota axis and exemplify relevant neuroimmune cross talk mecha-
nisms in visceral hypersensitivity, working toward understanding how gut micro-
biota-neuroimmune cross talk contributes to visceral pain sensation in IBS patients.
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INTRODUCTION

Irritable bowel syndrome (IBS) is characterized by frequent
abdominal pain, often related to altered defecation patterns.
This functional bowel disorder affects 10–20% of the general
population and presents without gross abnormalities within the
gastrointestinal tract, such as inflammation or structural defects
(16). Pain is the major indicative symptom in the diagnosis of
IBS, per the Rome IV diagnostic criteria: “recurrent abdominal
pain on average at least one day per week in the last three
months” (50). In addition, patients often display psychological
comorbidities. It is widely acknowledged that (early life) stress
contributes to the etiology of IBS (37). The pathophysiology of
IBS is not fully understood; yet, visceral hypersensitivity of the
lower gastrointestinal tract, i.e., an increased response to co-
lonic stimuli, is regarded as an underlying mechanism for pain
sensation in a large proportion of IBS patients. Perceived
abdominal pain is usually experienced as debilitating, espe-
cially since symptomatic treatment strategies are often insuf-
ficient in relieving abdominal discomfort. Therefore, an in-

creased understanding of how visceral hypersensitivity arises is
key in development of therapeutic strategies.

Since signaling between the nervous system and gastroin-
testinal tract is dysregulated, IBS is commonly referred to as a
disorder of the gut-brain axis. Multiple communication sys-
tems are involved along this axis, including microbiota-host
cross talk and neuroimmune interactions. Growing evidence
indicates that IBS patients have a different gut microbiome
compared with healthy volunteers (63). Dysbiotic colonic mi-
crobiota (i.e., bacteria) and mycobiota (i.e., fungi) are observed
in hypersensitive individuals (11, 63). However, the mecha-
nisms through which the gut microbiota influence pain percep-
tion have not been fully elucidated. Furthermore, it should be
emphasized that until now, despite the observed associations in
humans, evidence for a causal role of the gut microbiome in
IBS is from animal studies only. Immunological recognition of
microbial compounds may alter neuronal signaling and hence
visceral sensitivity (6, 45). The multitude of signaling mole-
cules derived from the immune system can have many effects
on the gut nervous system, given that they may directly
enhance excitability of afferent nerves (6, 20), alter epithelial
barrier function, and influence homeostasis of the gastrointes-
tinal tract. Taken together, the communication between theCorrespondence: W. J. de Jonge (w.j.dejonge@amsterdamumc.nl).
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brain and gut is influenced by interacting microbiota and
immune responses (Fig. 1), which further complicate research
on the role of each of the respective elements in IBS patients.

In this review, we aim to provide a brief overview of the role
of stress in bidirectional communication within the brain-gut-
microbiota axis known thus far and discuss the connecting role
of inflammatory mediators in visceral hypersensitivity.

NEUROIMMUNE CROSS-TALK AND INTERACTIONS WITH
THE INTESTINAL MICROBIOTA

Communication between gut and brain is essential in main-
taining healthy gut function. The brain-gut axis comprises

signaling between the central nervous system (CNS), the en-
teric nervous system (ENS), immune cells, and the microbiota
(24). Direct extrinsic control over the intestine is exerted
through the autonomic nervous system, maintaining physio-
logic functioning of the gut through modulation of secretory
factors and motility. The distal colonic segment and rectum are
innervated by the inferior mesenteric ganglia and pelvic gan-
glia, respectively. Moreover, the autonomic nervous system
connects with the intrinsic nervous system of the intestine, the
ENS, and is thereby also able to influence immune modulation
in the intestinal wall (extensively reviewed in Ref. 12). Sensory
afferent neurons connect the gut to the brain to relay informa-
tion on gut luminal contents to the CNS. Vagal afferents reside
in the nodose/jugular ganglia and signal to the brain stem,
being responsible for nutrient sensation and physiological
signaling; spinal afferents reside in the dorsal root ganglia
(DRG) and signal to the spinal cord, responding to mechanical,
thermal, and noxious stimuli to mediate pain signaling (13, 36).

We will discuss interactions within the gut-brain axis related
to the microbiota, based on either descending (Descending
Interactions: Influence of Stress Along the Gut-Brain-Micro-
biota Axis) or ascending (Ascending Interactions: Influence of
Microbiota on Immune Responses and Visceral Afferent Sen-
sation) interactions. First, we will address modulation of im-
mune responses, pain perception, and microbiota under the
influence of stress; in the second part, we will outline the
influence of the gut microbiota on psychological symptoms and
pain perception.

Descending Interactions: Influence of Stress Along Gut-
Brain-Microbiota Axis

Psychological stress plays a crucial role in IBS through
alterations of intestinal physiology. Stress is commonly de-
fined as physical or emotional occurrences that cause mental or
physical deviations from what is considered to be ordinary.
Under normal conditions, the brain can inhibit ascending
nociceptive afferent pathways by activation of descending
inhibitory pathways. This endogenous pain inhibition, assessed
by using conditioned pain modulation paradigms, is signifi-
cantly diminished in IBS (3). Because a possible correlation
with stress was only addressed in a limited set of studies (47),
we refer to two recent IBS-focused meta-analyses for further
details on the possible role of such descending pain-modulating
pathways (3, 47).

Since (early life) stress is regarded as an important trigger
for visceral hypersensitivity in IBS (65), this is frequently
employed in IBS-like animal models: the maternal separation
model relies on neonatal stress, although other models (e.g.,
restraint stress, chronic and repeated stress) employ stress at
the adult age (44). In these models, the animals display (stress-
related) IBS-like symptoms, including visceral hypersensitiv-
ity, motility disturbances, and anxiety-like behaviors. Upon
stress, many crucial mediators are released, including cortico-
tropin-releasing factor (CRF), adrenocorticotropic hormone
(ACTH), and cortisol (or corticosterone in rodents) (60, 67).
The hypothalamic-pituitary-adrenal (HPA) axis is hyperre-
sponsive in IBS-like rodent models, reflected through in-
creased serum corticosterone levels in animals which under-
went neonatal maternal separation with respect to their non-
handled controls (2, 44). Although hyperactivation of the HPA
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Fig. 1. Schematic overview of bidirectional neuroimmune interactions con-
cerning microbiota-mediated visceral hypersensitivity. Psychological stressors
induce release of corticotropin-releasing factor (CRF), adrenocorticotropic
hormone (ACTH), and cortisol, thereby influencing immunity, gut homeostasis
and microbiota. In reverse, (altered) microbiota or aberrant immune responses
sensitize afferent nerves and henceforth influence pain perception. Labels and
numbers refer to sections in this theme: Descending Interactions. Influence of
Stress Along the Gut-Brain-Microbiota Axis: 1) Psychological stress plays a
crucial role in IBS through alterations of intestinal physiology; 2) Microbiota
are altered upon stressful events; and 3) Modulation of systemic and local
immune responses by stress; Ascending Interactions. Influence of Microbiota
on Immune Responses and Visceral Afferent Sensation; 4) Microbial dysbiosis
is associated with IBS symptoms; 5) Influence of microbiota on psychological
stress and pain perception; and 6) Microbial products are able to induce
neuronal activation or sensitization through direct or indirect pathways.
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axis is clearly displayed in these rodent models, there is no
consensus whether this is an accurate reflection of IBS patients
Even though IBS prevalence is higher for women than for men,
the majority of animal investigations are restricted to males,
only to avoid effects of the estrous cycle. Because of this
practice, the translational value of preclinical HPA-axis results
is questionable. In the largest study characterizing the HPA
axis in IBS patients thus far, intravenous administration of
ACTH showed increased cortisol response in men, but blunted
response in women compared with sex-matched healthy vol-
unteers (75). These results do not support the hypothesis that
IBS is associated with an augmented HPA axis response, and
also emphasize that restricting preclinical IBS studies to males
should be avoided whenever possible.

The molecules involved in the HPA axis have widespread
effects on the gastrointestinal tract, as readily reflected in
increased colonic motility and visceral hypersensitivity in rats
upon intracerebroventricular administration of CRF. In addi-
tion to central CRF, peripheral CRF was also shown to mediate
important effects of stress-induced changes in gut motility,
barrier function, and visceral sensitivity, partially via mast cell
activation (as extensively reviewed in Refs. 60 and 65). Al-
though most of these CRF-related observations were made in
animal models, iv CRF administration was shown to change
intestinal motility in healthy volunteers and to a bigger extent
in IBS patients (33). CRF also exerts its functions through
additional stress-related molecular pathways, such as substance
P and nerve growth factor (NGF) (8, 76). Both molecules are
able to modulate physiological functioning of the intestine.
Substance P acts via enteric nerves and mast cells to regulate
intestinal ion secretion and barrier function (76). Also, in-
creased levels of NGF have been observed in the cerebrospinal
fluid (21) and mucosa (79) of IBS-like rats compared with
control animals. Signaling of NGF through tropomyosin recep-
tor kinase A (TrkA) has been associated with epithelial barrier
dysfunction (79) and enhanced visceral sensitivity (7, 71).
Recent observations in rodents indicated that inhibition of NGF
can reverse early life stress-induced enterochromaffin cell
hyperplasia, increased serotonin production, and visceral hy-
persensitivity, all of which are IBS characteristics (79). These
same investigators also showed a NGF-dependent increase in
Paneth cell numbers of maternal separated rats. This could be
highly relevant because these cells are capable of modulating
the gut microbiome to induce visceral hypersensitivity (58).

As a result of the multitude of CRF-induced gastrointestinal
manifestations, CRF antagonism was attempted as a therapeu-
tic target in IBS. Yet, two clinical trials with CRF1 receptor
antagonists showed no patient benefit (30, 66). Failure may be
explained by dose-limiting side effects or the antagonists not
being potent enough. Another explanation may be found in the
design of most preclinical investigations that instigated these
clinical trials. Almost without exception, these animal experi-
ments were restricted to (successful) prestress administration
of CRF receptor antagonists. One investigation, however, com-
pared two different treatment protocols using the CRF1 recep-
tor antagonist �-helical CRF. In maternal-separated rats, an-
tagonist administration before acute stress at the adult age
prevented stress-induced visceral hypersensitivity, and a sim-
ilar result was obtained by the use of a mast cell stabilizer.
These results confirmed earlier reports. However, poststress
antagonist treatment was unable to reverse existing hypersen-

sitivity to distension whereas mast cell stabilization was still
effective (72). Thus, in contrast to the acute phase, chronic
symptoms may be fueled by factors other than CRF alone. In
a later study, using the same rat model, it was shown that yeast
or yeast antigens are a driving force for continued poststress
mast cell degranulation and chronic abdominal pain complaints
(11). Taken together, these two studies showed the relevance of
multidirectional microbiota-neuroimmune interactions for vis-
ceral hypersensitivity.

Microbiota are altered upon stressful events. Multiple ro-
dent studies have shown the effect of stress on the gut micro-
biome, including in models of chronic, unpredicted stress (35,
48), repeated stress (32), and early life stress (26). The latter
study provided conclusive evidence for the relevance of stress-
induced changes by colonizing adult germ-free maternal sep-
arated and germ-free control mice with the same microbiota.
This not only led to distinct microbiome profiles in recipient
groups, but also to anxiety-like behavior (a psychiatric comor-
bidity in IBS) in maternal separated mice, but not in normal
controls. Using the maternal separation model in rat, it was also
shown that early life stress changes the composition of the
fungal microbiome (i.e., mycobiome). Moreover, fecal transfer
experiments indicated that only the maternal separation myco-
biome was capable of conferring the visceral hypersensitivity
phenotype to recipient fungicide-treated maternal separation
rats (11). These two articles not only confirmed that stress
alters the gut microbiome but also showed that these changes
are relevant to the observed IBS-like phenotype. Werbner and
colleagues (77) recently showed that upon stress, microbiota
composition and its metagenome can shift toward a more
virulent composition, even leading to increased translocation
of bacteria into lymph nodes to trigger increased immune
responses. Additional stress-induced alterations were shown to
include increased presence of inflammation-inducing microbes
such as Helicobacter and Streptococcus (35), a decrease in
microbial diversity (52), and decreased Lactobacillus (48). The
exact mechanisms leading to these microbiota alterations have
not yet been elucidated, but may involve changes in gut
motility and related substrate availability (34). Moreover,
stress is also known to impact the immune system (25), and
innate as well as adaptive immune cells were shown to affect
gut microbiota (31, 81). Importantly, most of the studies
concerning the microbiota-gut-brain axis employ rodent exper-
iments. Whether these observations hold true for human as
well, is still under debate. Early in 2020, Jarbrink-Sehgal and
Andreasson (40) authored a publication in which research
regarding mental health status and microbiome composition in
humans, published during the last two years, was reviewed. It
was suggested that confounding factors, large interstudy vari-
ation, small sample size, and multiple comparisons preclude
conclusions regarding causality and differences in microbiota
composition. To further the field, the need for well-designed
and larger longitudinal studies was emphasized.

Modulation of systemic and local immune responses by
stress. Psychological stress is known to impact (systemic)
immunity. Although conflicting data exist, there is evidence to
suggest that chronic stress, which is thought to play an impor-
tant role in IBS, is immunosuppressive (62). This may explain
why, despite gut barrier dysfunction (55), in IBS there are
reports of low-grade inflammation only (9). Importantly, stress
will activate the HPA axis as well as the sympathetic-adrenal-
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medullary axis. Although catecholamines released during the
latter not only affect the immune system but the microbiota as
well, these hormones were suggested to be mostly responsible
for immune effects of acute stressors (61, 62). In consequence,
most of the IBS-related literature has a focus on the role of the
HPA axis and its related hormones.

Throughout the gastrointestinal tract, many immune cells
express CRF receptors, potentiating the role of stress-signaling
molecules in intestinal immune responses. A well-known ex-
ample of the connectivity between brain, gut, and immune
responses is stress-initiated mast cell signaling in IBS. Colonic
mucosal mast cells are activated by CRF (54), inducing release
of mast cell mediators such as histamine, proteases, and cyto-
kines. These molecules are able to activate sensory neurons
isolated from the dorsal root ganglia (DRG) (15). Secreted
molecules from IBS biopsies, but not from healthy volunteers,
are also able to activate neurons through protease-associated
receptors 1 and 2 (PAR1, PAR2) or histamine-1 receptor
activation (14, 15, 18, 27). Especially neuronal histamine
signaling plays a crucial role in visceral nociception in IBS
patients: histamine signals through the histamine-1 receptor
(H1R), to potentiate the transient receptor potential vanilloid 1
(TRPV1) ion channel (71, 80). Corroborating the importance
of histamine, both stabilization of mast cells and H1R antag-
onism successfully reduce abdominal pain in IBS patients and
visceral hypersensitivity in a rat model of stress-induced vis-
ceral hypersensitivity (43, 64, 80).

In IBS, mechanisms including mast cell degranulation and
subsequent afferent activation are clearly involved in mediat-
ing visceral hypersensitivity (43, 80). Yet, possibly due to the
lack of methodological standardization and differences in pa-
tient selection, opposing results were reported concerning low-
grade mucosal inflammation. A recently published study, in-
volving 171 IBS patients and 127 healthy volunteers, reported
on the expression of 36 immune-related genes in mucosal
biopsies. This included markers for inflammatory mediators
and mast-cell related genes. Only 33% of patients showed
some signs if immune activation, and this was not related to
clinical symptoms (1). Nevertheless, in a 2017 systemic review
and meta-analysis of case-control studies evaluating immune
cell counts, it was concluded that mast cells and CD3� T cells
are increased in colonic patient biopsies (9). Interestingly,
results of this meta-analysis showed higher mast cell numbers
in diarrhea as well as constipation-predominant patient groups.
This may explain why authors suggested that “the diagnostic
value of the quantification of colonic mucosal cells in IBS
requires further investigation.”

Ascending Interactions: Influence of Microbiota on Immune
Responses and Visceral Afferent Sensation

Microbial dysbiosis is associated with IBS symptoms. In-
creasing evidence fortifies the role of microbiota in visceral
hypersensitivity and associated symptoms in IBS. Transfer of
human IBS feces into rats induces visceral hypersensitivity
(22), which has also been shown in rat-to-rat fecal transfer
experiments (11). Although (dysbiotic) microbiota are associ-
ated with visceral hypersensitivity, complete eradication of
commensals through generation of germ-free animals also
leads to enhanced colonic sensitivity (46). Together, these
findings indicate that a balance in microbiota is essential for

normal perception of visceral stimuli, and presumably other
IBS-related symptoms.

Many efforts have been put into defining an “IBS-associ-
ated” microbial signature associated with presence of IBS
complaints, but both inter- and intrastudy variability compli-
cate the definition hereof. In a recent Swedish study, no IBS
microbiota signature was defined compared with healthy vol-
unteers, neither based on microbiota analysis of sigmoid bi-
opsy samples (n � 313 healthy vs. n � 63 IBS) or fecal
samples (n � 153 healthy vs. n � 32 IBS) (38). In another
recently evaluated cohort (n � 1,025 healthy vs. n � 412 IBS),
a microbial signature for IBS was identified that is character-
ized by a small decrease in Faecalibacterium prausnitzii and
an increase in Streptococcus spp (74). The microbiota of
diarrhea-predominant IBS patients and postinfectious IBS are
alike, with both containing more Bacteriodetes spp but less
Clostridia spp compared with healthy volunteers (39). Because
of relatively small sample sizes, differences in microbial com-
position may be obscured and thus require more advanced
analytical approaches. For example, no differences in fecal
microbiota abundance or compositions were found by using a
classic approach, although a microbial signature associated
with severe IBS was revealed using machine-based learning
techniques (n � 110 healthy vs. n � 39 IBS subjects) (69).
Although findings vary between studies, the majority indicates
that IBS-associated microbiota show a lower diversity in both
bacterial and fungal communities (11, 74). Moreover, a sys-
tematic review mainly revealed a decrease in Bifidobacterium
and an increase in Lactobacillaceae compared with healthy
controls (57).

Influence of microbiota on psychological stress and pain
perception. Increasing attention is being given to the role of the
gut microbiota in psychological status. Many of the mecha-
nisms through which microbes are able to communicate with
the brain, and hence influence psychological status, have ex-
tensively been reviewed by Cryan and Dinan (23). The impor-
tance of the microbiota in psychological well-being has also
been demonstrated by fecal microbiota transfer from anxious
mice into germ-free mice, which displayed anxiety-like behav-
ior upon introduction of the microbiota (26). One of the
mechanisms through which the microbiota influences the brain
is through secretion of their metabolites. Short-chain fatty
acids (SCFA), products of bacterial metabolism, have a wide-
spread function in gut functioning. However, the role of SCFA
in IBS is controversial, as butyrate enemas appear to have
opposing effects on visceral perception. Several studies report
that butyrate may decrease pain sensation, both in IBS-like
rodents and IBS patients, while other studies report enhanced
visceral sensitivity (41). Nevertheless, recent studies indicated
that treatment of IBS-like rats with the butyrate-producing
probiotic Lachnospiraceae decreases stress-induced visceral
hypersensitivity (82). Moreover, SCFA supplementation in
psychological stress mouse experiments alleviated stress-in-
duced intestinal permeability and corticosterone (70). In addi-
tion to SCFAs, bacteria produce gases such as methane and
hydrogen, which have been related to visceral perception, IBS
severity, and CNS symptoms like nausea, headache, and tired-
ness (78).

Microbial products are able to induce neuronal activation
or sensitization through direct or indirect pathways. Stress is
known to cause mast cell-dependent gut barrier dysfunction in
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rats and humans (7, 73), and barrier dysfunction is observed in
at least a subset of IBS patients (55). In IBS, impaired barrier
function may facilitate translocation of microbial content, mi-
crobes, or antigens thereof, from lumen to tissue. Flagellin is
present in flagellated bacteria, and the enhanced presence of
anti-flagellin antibody titers in the serum of IBS-D patients
suggests that microbial translocation does occur and impacts
intestinal homeostasis (29). In the same group of patients,
increased serum level of lipopolysaccharide (LPS), an outer
membrane component of Gram-negative bacteria, was ob-
served (29). Foods high in fermentable oligosaccharides, di-
saccharides, and polyols (FODMAPs) exacerbate symptoms in
IBS. Investigations by Zhou et al. (83) demonstrated that a
high-FODMAP diet induces increased serum LPS levels in rat,
and the observed barrier dysfunction and visceral hypersensi-
tivity could be mimicked by intracolonic LPS administration,
likely reflecting a FODMAP-induced overgrowth of Gram-
negative bacteria and increased LPS concentration in fecal
samples. Also, Akkermansia muciniphila, of the phylum Ver-
rucomicrobia, was significantly increased in IBS patients, and
a low-FODMAP diet improved symptoms and reduced fecal
LPS levels. Moreover, intracolonic administration of fecal IBS
supernatants induced an enhanced response to colorectal dis-
tension in rats which could be inhibited by administration of an
LPS inhibitor.

LPS may induce neuronal signaling through both direct and
indirect activation of nociceptor DRG afferent neurons. These
neurons were found to express Toll-like receptor 4 (TLR4) and
CD14, which are part of the mammalian receptor complex that
detects LPS (28). LPS derived from Porphyromonas gingivalis
can sensitize somatic nociceptor neurons to induce calcitonin
gene-related peptide release through both TRPV1 and TLR4
(28). Uropathogenic Escherichia coli has also been found to
induce pain through LPS and TLR4 signaling, a process that
depends on the O-antigen moiety (59). A second mechanism
by which LPS (derived from several bacterial strains including
E. coli, Salmonella typhimurium, Klebsiella pneumoniae, and
Pseudomonas aeruginosa) activates somatic and visceral no-
ciceptor neurons is through direct gating of the large-pore
cation channel TRPA1 (51). It has to be emphasized, however,
that, although in IBS patients LPS does seem to translocate
from the gut lumen (29, 83), it remains to be determined
whether LPS-mediated direct neuron sensitization described
here (28, 51, 59) are relevant to IBS pathology. Another
possibility is that LPS sensitizes macrophages and other innate
immune cells that release immune mediators that sensitize
DRG neurons to produce pain.

Other mechanisms relevant for interactions by microbial
products with sensory afferents have recently been discussed in
this journal by Lomax et al. (45). in which bacterial proteases,
neurotransmitters (GABA, serotonin, histamine), and SCFAs
are addressed. In addition, bacteria secrete virulence proteins to
facilitate their growth and survival in the gut lumen, as well as
mediate their invasion of tissues. Several of these virulence
factors, especially pore-forming toxins including Staphylococ-
cus aureus-derived �-hemolysin (�HL), can cause direct neu-
ronal activation, leading to pain and downstream neuroimmune
signaling in host defense (10, 20, 56). Because most of these
studies were originally discovered in somatic pain, even
though similar nociceptors were analyzed as visceral afferents,
it remains to be determined whether bacteria-neuron interac-

tions are involved in visceral pain. In addition, recent investi-
gations showed that fungi may act on nociceptors. Comparable
to bacteria, Candidalysin is used for enhanced virulence, being
able to induce epithelial responses leading to an increase in
proinflammatory mediators (53). Although the same mecha-
nism for neuronal activation was assumed for �HL and Can-
didalysin, exposure of neurons to the latter is not essential to
increases in allodynia in vivo (49). Earlier investigations sug-
gested that yeast dependent visceral hypersensitivity in IBS-
like maternal separated rats depends on immune cells and their
fungal recognition through a Dectin-1/Syk pathway to subse-
quently release histamine to activate sensory afferents (11).
Again, whether direct fungal-neuron interactions or indirect
mycobiome-mediated neuronal activation pathways are rele-
vant in IBS, remains to be determined.

Conclusion and Future Perspectives

Psychological stressors cause exacerbation of IBS-associ-
ated symptoms such as abdominal pain, often caused by
visceral hypersensitivity, i.e., the enhanced sensitivity toward
colonic stimuli. Although not all molecular and cellular mech-
anisms underlying this altered sensitivity have been fully
elucidated, it is clear that complex communication systems
along the gut-brain axis play a central role. Neuroimmune
interactions and cross talk with the microbiota are of impor-
tance in initiation and/or maintenance of nociception.

To decrease altered visceral sensations, modulation of either
the stress responses or microbiota could be viable options.
Modulation of stress responses may be considered as a thera-
peutic option, as has been attempted before with blockage of
CRFR1. However, the widespread effects of the HPA-axis-
derived molecules make it complicated to intervene with this
system, as off-target effects may disturb general homeostasis.

As IBS patients often display an altered microbiota compo-
sition compared with healthy individuals, it is likely that
visceral pain complaints are a result of aberrant responses to
these luminal microbes. Moreover, the gut microbiota may
have a crucial role in symptoms of IBS patients: the microbiota
alters stress responses, immunity, and visceral perception
through multiple mechanisms. Because of this central role, we
suggest targeting and modulating the microbiota as a whole
may qualify as a safe and suitable therapeutic option. Several
approaches have already been tested with positive outcomes in
rodent models and/or IBS patients, including natural herb oils,
medical diets, antibiotics, pre- and probiotics, and fecal micro-
biota transplantation. Further development of therapeutics or
treatment strategies targeting the microbial composition in IBS
is favorable, as microbiota modulation may ultimately restore
neuroimmune interactions and hence homeostatic communica-
tion along the gut-brain-microbiota axis.
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