Review

Neuronal Regulation of Immunity in the Skin and Lungs

Kimbra J. Blake, Xin Ru Jiang, and Isaac M. Chiu

The nervous and immune systems are classically studied as two separate entities. However, their interactions are crucial for maintaining barrier functions at tissues constantly exposed to the external environment. We focus here on the role of neuronal signaling in regulating the immune system at two major barriers: the skin and respiratory tract. Barrier tissues are heavily innervated by sensory and autonomic nerves, and are densely populated by resident immune cells, allowing rapid, coordinated responses to noxious stimuli, as well as to bacterial and fungal pathogens. Neural release of neurotransmitters and neuropeptides allows fast communication with immune cells and their recruitment. In addition to maintaining homeostasis and fighting infections, neuroimmune interactions are also implicated in several chronic inflammatory conditions such as atopic dermatitis (AD), chronic obstructive pulmonary disease (COPD), and asthma.

The Nervous and Immune Systems: Allies Working under Duress

Our barrier tissues are under constant assault from a variety of environmental threats, including noxious chemicals, thermal changes, mechanical injury, and microbial pathogens. The nervous and immune systems are specifically armed to combat these assailants to maintain homeostasis and to coordinate host defense. Mammalian barrier tissues including the skin, lungs, and gut are innervated by the PNS that serves to detect stimuli, including harmful ones, to respond to them, and to regulate autonomic functions. The immune system responds to threats such as pathogens and irritants through antimicrobial mechanisms and clearance of damaged tissues. Whereas neural responses occur almost instantaneously, immune responses can take minutes to hours; the integration of these two systems through neuroimmune interactions creates a coordinated network that is ideally poised to preserve tissue integrity. Crosstalk between these systems is bidirectional because immune cells, nerves, and neurons are capable of responding to each other’s products (e.g., neurotransmitter receptors on immune cells and cytokine receptors on neurons).

In this review we highlight studies investigating neuroimmune interactions that occur in the skin and the lungs (e.g., [1–3] for reviews on neuroimmune interactions in the gut). Neural-mediated control of immunity is a fast-moving area, and while we cannot encompass the whole breadth of the literature in this area, we highlight several recent advances with the goal of focusing on studies demonstrating mechanisms by which neurons control immunity by direct signaling to either tissue-resident cells or recruited immune cells. A key neuroimmune reflex we do not cover is the cholinergic anti-inflammatory reflex, which acts through the vagus nerve, splenic macrophages, and cholinergic T cells [4] for review). We begin with an overview of general concepts of the role of neuroimmune interactions at barrier tissues. We next discuss the contribution of neuroimmune interactions in the skin, addressing its role in acute infection and chronic inflammatory diseases. The final section addresses neuroimmune interactions in the lung, with a focus on neural mediation of airway inflammation and chronic obstructive pulmonary disease (COPD).

Highlights

Barrier tissues, such as the respiratory tract and skin, are major sites where swift communication between the peripheral nervous system and immune system occurs.

Recent insights have uncovered the molecular mechanisms by which nerves regulate tissue-resident immune cells, including innate lymphoid cells (ILCs) and mast cells.

Bacterial, fungal, and parasitic pathogens can directly signal to peripheral sensory nerves to induce neuroimmune interactions during infection of barrier tissues.

Neuroimmune interactions are involved in the exacerbation of many chronic inflammatory diseases, including asthma, COPD, AD, and psoriasis.

Immune cells in the lungs and skin can be positively or negatively modulated by the nervous system, depending on the type of peripheral sensory or autonomic nerves—representing neuroimmune regulatory switches.

1Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
2Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK

*Correspondence: isaac_chiu@hms.harvard.edu (I.M. Chiu).
Neuroimmune Interactions at Barrier Tissues
Mammalian barrier tissues (e.g., skin, cornea, respiratory tract, gastrointestinal tract) interface with the environment, and must discern between innocuous and noxious stimuli, as well as maintaining homeostasis and integrity under changing conditions. The immune and nervous systems are tasked to carry out these essential functions. The immune system uses innate and adaptive mechanisms for host defense. The nervous system uses sensory neurons to induce protective nociceptive neural reflexes and the release of regulatory molecules and neurotransmitters that modulate inflammation to combat danger. Both systems coordinate their communication with epithelial cells to maintain barrier integrity to ward off threats. The crosstalk between the nervous and immune systems is a rapidly progressing field, and new studies highlight the importance of this communication within barrier sites.

PNS and the Immune System
The PNS consists of the somatosensory and motor branches. The motor branch is further divided into somatic and autonomic (sympathetic, parasympathetic, enteric) nervous systems. The somatosensory nervous system is responsible for mediating sensory functions, including touch, proprioception, and pain. Specialized subsets of somatosensory neurons include nociceptors and pruriceptors responsible for detecting noxious or itch-inducing stimuli, respectively. We focus attention on these neurons because their activation is typically coupled with immunity and inflammation. The autonomic system innervates a large number of tissues and serves to control involuntary activities: the sympathetic nervous system participates in the response of the body to stress, whereas the parasympathetic nervous system mostly maintains homeostasis [5]. All parts of the PNS coordinate responses to stressors and stimuli at host barrier tissues.

The skin and respiratory tract are densely populated by resident immune cells, including mast cells (see Glossary), dendritic cells (DCs), macrophages, innate lymphoid cells, and γδ T cells (Box 1). These cells have unique functions that are ideally poised to fight off pathogens and mediate wound healing at barrier surfaces. Neuroimmune interactions at these barrier tissues are an effective way to coordinate host defense.

Neurogenic Inflammation and Immune Modulation
‘Neurogenic inflammation’ was first termed following the observations that swelling, redness, and heat produced by chemical irritants are all dependent on local innervation, and that nerve stimulation leads to immediate vasodilation [6,7]. Neurogenic inflammation is mediated by sensory neuron release of neuropeptides, including calcitonin gene-related peptide (CGRP) and substance P (SP), which act on the vasculature and induce mast cell degranulation to produce edema, vasodilation, and immune cell extravasation. In addition to neuropeptides, sensory neurons can also release ATP, glutamate, brain-derived neurotrophic factor (BDNF), and potassium, and receptors for many of these factors are expressed by multiple immune cells (DCs, T cells, neutrophils, and macrophages). Sensory neurons also form close associations with many resident tissue immune cells, including mast cells, innate lymphocytes, and dermal dendritic cells (dDCs) [5,8] (Box 1). Expression of acetylcholine (ACh) receptors (muscarinic and nicotinic) and norepinephrine (NE) receptors (including α and β adrenergic receptors) has been found on T cells, macrophages, DCs, natural killer (NK) cells, B cells, and other immune cells [9,10]. However, the role of ACh and NE signaling in directly mediating neurogenic inflammation is not well understood, and further research is needed [11].

Although the focus of this review is primarily on the modulation of immune cells by neurons, it is important to note that neuroimmune interactions are bidirectional. Neuronal cell bodies and their nerve endings have receptors that can respond to immune cell-derived cytokines, lipids,
growth factors, and proteases. This can serve to either amplify or dampen the neural response; in some cases sensitization of the neuron can also occur. Immune cells, by themselves, are capable of synthesizing and releasing 'neuromodulators' such as ACh and dopamine to further regulate both immune cells and neurons, creating complex neuroimmunomodulatory circuits [8].

Neuroimmune Interactions That Regulate Barrier Function

Barrier functions in the lungs and the skin are important in maintaining homeostasis and preventing infection. In mucosal surfaces such as the lungs, CGRP, a neuropeptide from nociceptor neurons, has been found to regulate mucus production, which is a key aspect of barrier function [12,13]. Nociceptor neurons also mediate barrier leakiness from the lung parenchyma into the blood during bacterial infection [14]. Mechanisms such as tight junction regulation, antimicrobial peptide production, ciliary sweeping, and prevention of water loss are all important lung epithelial functions. However, not much is known about the neuroimmune interactions that regulate these aspects of lung barrier integrity.

In the skin, keratinocytes are epithelial cells that make up the stratified epidermis (Figure 1A), and as such are important cells in barrier function (regulation of water loss, antimicrobial peptide secretion). These cells can also contribute to many inflammatory skin conditions in which barrier functions are compromised. In addition, keratinocytes mediate itch through their release of thymic stromal lymphopoietin (TSLP), histamine, and endothelin 1 (ET-1) which activate surrounding pruriceptive nerves; itch promotes scratching and mechanical barrier disruption. The thickened scaly skin noted in inflammatory skin diseases can be the result of keratinocyte proliferation induced by neuropeptides (CGRP) and cytokines. Keratinocytes can also release nerve growth factors, and proteases. This can serve to either amplify or dampen the neural response; in some cases sensitization of the neuron can also occur. Immune cells, by themselves, are capable of synthesizing and releasing 'neuromodulators' such as ACh and dopamine to further regulate both immune cells and neurons, creating complex neuroimmunomodulatory circuits [8].
factor (NGF) in response to SP and CGRP, mediating increased innervation and leakiness of the skin barrier [15]. Bidirectional keratinocyte–neuron interactions represent potent feedback loops that lead to exacerbation of chronic skin conditions, and also highlight the importance of barrier function for neuroimmune interactions in the skin.

Figure 1. Neuronal Interactions with Immune Cells in Healthy Skin and in Dermatitis. (A) In healthy conditions, the epidermal layer is composed of tightly spaced keratinocytes which help to keep allergens, pathogens, and microbial toxins out. Skin-resident innate immune cells including dermal DCs (dDCs), γδ T cells, innate lymphoid cells (ILCs), and mast cells (MCs) are ideally poised to respond to signals communicated by surrounding sensory nerve fibers. (B) Allergic contact dermatitis (ACD) is a T cell-mediated, type IV hypersensitivity reaction induced by allergens/haptens that results in itchy and inflamed skin. The nociceptive ion channel TRPA1 was found to mediate both persistent itch and inflammation (edema, leukocyte infiltration, and keratinocyte hyperplasia) in mouse models of ACD driven by squaric acid dibutylester (SADBE), urushiol, or oxazolone [25,26]. Sensory nerves are thought to modulate the immune response by interacting with antigen-presenting cells (APCs) in these conditions [24]. (C) Atopic dermatitis (AD) is an allergic inflammatory skin condition that results in thickened scaly skin and impaired epidermal barrier function, allowing penetration of allergens and microbial toxins into the skin. Activated sensory nerves promote neurogenic inflammation (B,C) and secrete substance P (SP), which leads to degranulation of MCs that release histamine and other cytokines. This pruritogenic cocktail potentiates the itch–scratch cycle that is characteristic of AD, and also helps to further recruit immune cells to the inflamed area (darkened area surrounding each keratinocyte). Nerves also release calcitonin gene-related peptide (CGRP), which mediates keratinocyte hyperplasia, resulting in increased epidermal thickness (B,C) [29]. Keratinocytes also release nerve growth factor (NGF) (not shown), which leads to neuronal hyperinnervation and penetration of sensory nerves into the topmost layers of the skin, illustrated in the figure by the nerve endings (blue) extending through the spaces between keratinocytes into the topmost layers of the epidermis. Abbreviation: PMN, polymorphonuclear neutrophil.
Neuroimmune Interactions in the Skin
The skin is one of the largest organs in the human body, and its integrity is necessary for homeostasis, protecting barrier function, and combating invading dangers such as pathogens. The nerve fibers innervating the skin are in close proximity to skin structural and functional cells, including keratinocytes, fibroblasts, endothelial cells, Schwann cells, and resident immune cell populations [16]. The cutaneous sensory nerve fibers (CSNFs), which innervate both the dermal and epidermal layers, make up the majority of skin nerve fibers. CSNFs originate from the dorsal root ganglia (DRG) in the spinal cord or from the trigeminal ganglia. DRG neurons project afferent fibers to the skin of the trunk of the body; nerve signals from these fibers synapse onto the dorsal horn of the spinal cord where signals are transduced to the brainstem and thalamus. Trigeminal ganglia neurons innervate the skin of the head and face. CSNFs are responsible for sensory modalities including touch, thermosensation, mechanosensation, itch, and pain [15,17]. The autonomic nervous system innervating the skin is largely sympathetic, and makes up a small overall percentage of the nerve fibers. These nerves are restricted to the dermal layer and innervate hair follicles, blood vessels, lymphatic vessels, apocrine and eccrine glands, and erector pili muscles [17,18]. The resident immune population ensures both protection against pathogens and maintenance of tolerance against innocuous antigens (Box 1) [19]. The skin is densely innervated, and neuroimmune interactions are important for communication with the environment and for response to changes in it. Consistently, aberrant neuroimmune interactions can be the root of several inflammatory skin conditions. We next discuss the role of the nervous system in regulating acute neurogenic inflammation, pathogenic infection, and immunity in several skin diseases.

Acute Neurogenic Inflammation
Exposure of the skin to irritants, noxious stimuli, and even pathogens can promote neurogenic inflammation. Nociceptors release the neuropeptides CGRP and SP from nerve terminals that act on the vasculature and mast cells to induce vasodilation, edema, and immune cell recruitment. TRPA1 and CGRP were found to mediate the effects of vesicant-induced skin injury, edema, and inflammation [20]. TRPA1, as well as TRPV1, are important ion channels in inflammatory pain because they are activated downstream of cytokine signaling as well as by endogenous reactive species such as nitric oxide, peroxynitrite, and oxidized lipids [21]. In addition to acute neurogenic inflammation promoted by classically described irritants and noxious stimuli, this neural-driven process can be a component of inflammatory skin conditions, many of which are characterized by increased levels of SP and CGRP [22]. Recent work has shown that SP-driven activation of mast cells through MrgrpB2 in mice and MrgrpX2 in humans is a key molecular mechanism of neurogenic inflammation (discussed in Box 2).

Inflammatory Skin Diseases
Neuroimmune interactions contribute to the pathology of AD, psoriasis, and allergic contact dermatitis (ACD) (Figures 1B,C and 2A). Sensory neurons mediate both the itch associated with these disease conditions and neurogenic inflammation, leading to exacerbation and continuation of symptoms, as well as to denervation – resulting in amelioration of symptoms [22,23]. In these conditions, much is known about how the immune system communicates with sensory nerve endings to promote itch [TSLP, interleukin (IL-31), histamine], but far less is known about how these neurons control inflammation.

Allergic Contact Dermatitis
ACD is a T cell-mediated, type IV hypersensitivity reaction caused by various allergens/haptens, which results in itchy, inflamed skin. Cutaneous sensory nerves are hypothesized to modulate the immune response by interacting with antigen-presenting cells (APCs) [24]. It was recently determined that TRPV1 and TRPA1 contribute differentially to contact hypersensitization in a mouse.
ACD model induced by squaric acid dibutylester (SADBE): SADBE directly activated both TRPV1 and TRPA1 channels on neurons to produce itch; only TRPV1 ion channels played a role in inflammation because ablation of TRPV1+ neurons or genetic deficiency in TRPV1 led to increased inflammation [25]. By contrast, TRPA1 was necessary for mediating both itch and inflammation (edema, leukocyte infiltration, keratinocyte hyperplasia) in ACD mouse models using urushiol (poison ivy component) and oxazolone, whereas TRPV1 channels were not involved [26] (Figure 1B).

Atopic Dermatitis
AD is a chronic inflammatory skin condition characterized by chronic pruritus, thickened scaly skin, impaired epidermal barrier function, and a type 2 T helper (T(H)2) cell-skewed allergic response. Chronic itch is a debilitating symptom of this condition, and the postulated mechanisms were previously highlighted [27], one being mast cell degranulation (Box 2). Topical treatment with mastoparan, which activates connective tissue mast cells via MrgprX2, enhanced clearance of S. aureus from infected mouse skins and accelerated healing of dermonecrotic lesions [83]. Given the known role of SP to activate MrgprX2 receptors on mast cells, and the ability of bacterial pathogens to activate peptidergic neurons that express SP [36,39], it would be interesting to determine if nerve–mast cell interactions play a role in infection.

Psoriasis
Psoriasis is a skin inflammatory disorder characterized by dysregulation in the IL-17/IL-23 axis, acanthosis, hyperkeratosis, and itch. Neuroimmune interactions mediate both induction of IL-23
signaling and inflammatory lesion formation. The role of the sensory nervous system in psoriasiform skin inflammation was first shown by cutaneous denervation of a psoriasis mouse model [23]. When the skin was surgically axotomized in KC-Tie2 psoriasiform mice, acanthosis significantly improved, CD4+ T cells and CD11c+ DCs were decreased compared with the contralateral innervated side of the mouse. These characteristics were found to be largely dependent on CGRP and SP, suggesting targeting the nervous system as a treatment option for psoriasis. In a follow-up study, botulinum neurotoxin A (BoNT-A) was injected intradermally into KC-Tie2 mice [30]; this toxin cleaves SNAP25 and prevents local release of neuropeptides such as CGRP and SP. BoNT-A injection significantly improved both skin inflammation and epidermal hyperplasia. Small-scale human clinical trials have also shown the effectiveness of BoNT-A in improving plaque

Figure 2. Neuroimmune Interactions in Skin Infection and Psoriasis. Several pathogens, such as Candida albicans, Staphylococcus aureus, and Streptococcus pyogenes, have been determined to interact with sensory nerves in the skin to drive neuroimmune modulation. Pathogenic activation of sensory nerves leads to release of neuropeptides that modulate immune cells during infection, affecting infection and disease outcome. (A) The pathogenic yeast, C. albicans, activates sensory nerves during epicutaneous infection to release the neuropeptide calcitonin gene-related peptide (CGRP), which augments the release of interleukin (IL)-23 from CD301b+ dermal dendritic cells (dDCs). IL-23 then drives IL-17 release from γδ T cells, which mediates resistance against C. albicans by inducing polymorphonuclear neutrophil (PMN) recruitment and the expression of antimicrobial peptides (AMPs) [33]. In a mouse model of psoriasis, a similar neuroimmune interaction was found: sensory nerves mediate IL-23 release from dDCs which mediate IL-17 release by γδ T cells that contribute to psoriatic inflammation and plaque formation [32]. A similar neuroimmune mechanism operates during psoriasis-like inflammation. (B) S. pyogenes and S. aureus are bacterial pathogens that are known to cause painful and invasive skin infections such as abscesses, cellulitis, and necrotizing fasciitis. These pathogens directly activate sensory nerves via pore-forming toxins to produce pain and release CGRP from their nerve terminals. In S. pyogenes infection, CGRP prevents the recruitment of neutrophils (PMNs) and the subsequent killing of the bacteria, worsening infection outcome and bacterial clearance [35]. In S. aureus infection, nociceptor release of CGRP decreases both tumor necrosis factor (TNF)-α production from macrophages and lymph node hypertrophy, subsequently decreasing bacterial killing [36].
Using an imiquimod-driven model of psoriasis in mice, TRPV1+ nerves were found to mediate IL-23 release by dDCs, which drive IL-17 expression by γδ T cells, thereby promoting psoriatic inflammation (Figure 2A). In all, sensory nerves play a major role in the propagation of inflammation in psoriasis, and it seems plausible that targeting neuroimmune interactions could offer a promising treatment approach.

Skin Infections

When fungal, bacterial, or viral pathogens breach the skin barrier, the immune system is recruited to the site of infection to combat the threat. Both host resistance and host tolerance mechanisms are regulated by the nervous system during infection. Pathogens have been shown to secrete molecules that directly interact with the sensory nervous system. Because neuroimmune interactions are essential for barrier function, one might conjecture that these sensory nerves actively recruit immune cells to the site of infection. This is true in the case of the fungal pathogen, *Candida albicans*, in an epicutaneous skin infection model [33]. It was found that *C. albicans* directly activates nociceptive sensory nerves to release CGRP, which in turn augments the release of IL-23 from dDCs; IL-23 subsequently drives IL-17 production by γδ T cells to mediate resistance against this fungus (Figure 2A). Therefore, nociceptors are necessary for successful protection against *C. albicans* skin infection. Recent work has also shown that nociceptors boost the resolution of osteoinflammation in the bone caused by *C. albicans* by suppressing β-glucan-induced inflammation and osteoclast multinucleation through CGRP signaling [34].

Activation of sensory nerves can also potently suppress the recruitment and function of immune cells during skin infection. In a recent study, the pathogen responsible for necrotizing fasciitis, *Streptococcus pyogenes*, was found to activate TRPV1+ nerves, thereby promoting the secretion of CGRP. CGRP in turn prevented the recruitment of neutrophils and subsequent *S. pyogenes* opsonophagocytic killing, partly by reducing myeloperoxidase (MPO) activity (Figure 2B) [35]. When mice were depleted in the TRPV1 subset of neurons, infection severity decreased and neutrophil recruitment to the site of infection was increased. Blockade of neuronal signaling using botulinum neurotoxin or the CGRP receptor antagonist, BIBN4096, led to significantly improved neutrophil recruitment and infection outcome. Similarly, when a large portion of nociceptive neurons were depleted using Nav1.8-cre lineage ablation in mice, monocyte recruitment and lymphadenopathy increased in a *Staphylococcus aureus* subcutaneous infection model; CGRP also decreased tumor necrosis factor (TNF)-α production from macrophages (Figure 2B) [36].

Neuroimmune signaling may be finely tuned to the pathogen, and even to the specific area of the skin that is affected. For example, it is possible that itch-mediating pruriceptor neurons that largely innervate the epidermis could respond to distinct pathogens instead of deeper tissue-innervating pain-mediating nociceptor neurons. *S. aureus* subcutaneous infection causes painful abscesses, whereas epicutaneous infection can contribute to chronic itch. Skin colonization by *S. aureus* affects >90% of AD patients, often exacerbating this itch-inducing condition. Epicutaneous infection with *S. aureus* leads to inflammation via keratinocyte release of IL-36 that promotes IL-17 production from γδ T cells [37,38]. Our laboratory has determined that *S. aureus* is capable of interacting with nociceptor sensory nerves to produce pain during subcutaneous infections by secreting bacterial pore-forming toxins [36,39]. However, the question remains whether this pathogen can directly activate pruriceptor nerves at the barrier surface to induce itch and modulate neuroimmune interactions.

In addition to producing pain or itch during infection, other pathogens silence pain. Determining the molecular mechanisms involved could lead to the development of novel analgesics. The pathogen *Mycobacterium ulcerans* produces extensive skin lesions known as Buruli ulcers that are characteristically painless. Originally it was believed that this analgesia was due to nerve damage;
however, a recent study showed that mycolactone, an essential polyketide toxin of this pathogen, interacts with angiotensin 2 receptors (AT2Rs) to hyperpolarize sensory nerves through the opening of TRAAK potassium channels [40,41]. Because mycolactone can diffuse throughout the body, another study suggested that part of this analgesic effect may be due to the decreased neuroinflammation induced by this molecule [42]. However, in this study the effects of mycolactone were tested by intrathecal delivery; whether mycolactone would reach the CNS or DRG during M. ulcerans skin infection is currently unclear. More recently, AT2R was detected on macrophages infiltrating nerve injury sites, and these AT2R⁺ macrophages were necessary for the development of chronic neuropathic pain in peripheral tissues [43]. It would be interesting to determine whether M. ulcerans also acts on AT2R⁺ macrophages to block pain.

Sympathetic Nervous System and Skin Immunity
The sympathetic nervous system innervates the hair follicles and sebaceous glands in the skin, regulating stem cell regeneration, but its role in neuroimmune interactions is not as well studied. Sympathetic nerves can have important roles in immunity, especially because chronic ‘stress’ is known to exacerbate inflammatory skin diseases such as AD [44]. Using a heterotypic chronic stress model in rats, β2-adrenergic receptors were found to mediate increased itch hypersensitivity after administration of 5-hydroxytryptamine through the release of proinflammatory factors (TNF-α and IL-1β) [45].

Neuroimmune Interactions in the Respiratory Tract
Gas exchange with the external atmosphere occurs in the lungs. During respiration, the lung epithelial surface acts as a barrier surface that comes into direct contact with the environment [46]. With the constant risk of exposure to harmful substances, detection of these potential dangers and pulmonary immunity against them are important. Nerves are therefore crucial in quickly detecting harmful substances to coordinate immune responses, which ultimately can limit the magnitude of lung infection and help to resolve inflammation. Similarly to the skin, resident immune cells are also important for the quick response to barrier insult; these include macrophages, where a subpopulation was recently described to be closely associated with nerves in the lungs [47]. We highlight recent studies showing roles for lung-innervating neurons in regulating immune cell function in asthma, COPD, and lung infections.

Sensory nerve lung innervation largely originates from vagal afferents whose cell bodies reside in the nodose and jugular ganglia; remaining sensory nerve innervation comes from the DRG [48]. Nociceptive afferent nerve endings are located in the lung parenchyma and near the airways; this poises them to detect noxious stimuli such as allergens, irritants, and pathogens that are contained in inhaled air, and expel them through cough [5]. Sympathetic nerve innervation originates from the upper six thoracic segments of the spinal cord; these synapse with the sympathetic ganglia, and postganglionic fibers then innervate the lung. The cholinergic parasympathetic nerves originate from the vagal nuclei in the medulla; the superior and recurrent laryngeal vagal nerve branches synapse at the parasympathetic ganglia to innervate the airways [48] (Figure 3). The sympathetic nervous system controls bronchodilation and mucous production, whereas the parasympathetic nervous system controls bronchoconstriction. Regulation of oxygen and carbon dioxide levels, as well as neural reflexes such as coughing, results from these systems. The necessity of neuroimmune interactions in the lung was shown through vagotomy – which worsens lung infections, inflammation, and injury while increasing proinflammatory cytokine levels in the circulation in an Escherichia coli-induced acute lung injury model [49].

Sensory Neuron–Immune Interactions in Asthma and Airway Inflammation
Neuroimmune interactions have been extensively studied in asthma, an airway allergic reaction characterized by airway hyper-responsiveness and inflammation [50]. Nociceptor sensory nerves
were shown to play an important role in the etiology of asthma in several studies utilizing ovalbumin (OVA)-sensitization mouse models, as discussed here. The nociceptive TRPA1 ion channel was first shown to play a crucial role in driving immune cell cytokine production and airway hyper-reactivity in this model [51]. Treatment of mice with capsaicin to induce loss of TRPV1+ nociceptor neurons reduced both eosinophil infiltration and inflammation in OVA-induced airway inflammation [52]. Targeted genetic ablation of TRPV1+ neurons in the nodose/jugular vagal ganglia, which provide major sensory innervation to the lungs, or silencing these neurons using a tetanus toxin reporter, was shown to significantly reduce bronchial hyper-responsiveness in the OVA mouse model [53]. When NaV1.8+ nociceptors were genetically ablated or pharmacologically inhibited using the membrane-impermeant sodium channel blocker, QX-314, immune cell infiltration and bronchial hyper-responsiveness were reduced [54]. Sensory neuron expression of vasoactive intestinal peptide (VIP) was thought to contribute to activation of both CD4+ Treg and CD8+ T cells [55]. Figure 3. Neuroimmune Interactions in the Lungs. The lungs (center) are innervated by the parasympathetic, sympathetic, and sensory components of the peripheral nervous system. Parasympathetic nerves which originate in the medulla travel to the lungs via the vagus nerve. Sympathetic nerves originate in the ventral horn of the spinal cord. Nociceptive sensory nerves either innervate the lungs via the vagus nerve from the nodose and jugular ganglia or from the dorsal root ganglion located in the spinal cord. (Left) Lung-innervating nociceptor neurons can be activated by TRPV1 and/or TRPA1 stimulation in response to a variety of stimulants such as chemicals and irritants. Release of the neuropeptide calcitonin gene-related peptide (CGRP) can inhibit neutrophil recruitment and surveillance [14,67,68], whereas vasoactive intestinal peptide (VIP) activates innate lymphoid type 2 cells (ILC2s) [84] and type 2 T helper (Th2) cells [54]. Th2 cells produce interleukin (IL)-5, a potent activator of eosinophils. Substance P (SP) binds to Mas-related G protein-coupled receptor member B2 (MrgprB2) on mouse mast cells [78], resulting in their degranulation and thus the release of histamine and other cytokines. (Right) Lung-innervating autonomic neurons modulate ILC2 function. Parasympathetic nerves release neuromedin U (NMU) which acts on NMU receptor 1 (NMUR1) expressed on ILC2s to trigger the release of IL-5 and IL-13. IL-5 and IL-13 can then act on goblet cells to promote mucus release [58,59,61]. Noradrenaline (NA) release from sympathetic nerves, which binds to β2-adrenoceptor (ADRB2) on ILC2s, inhibits the release of these cytokines [60]. Abbreviation: DRG, dorsal root ganglia.
Recent studies have shown a role for TRP channels in other models of asthma. TRPA1 and TRPV1 channels were also shown to mediate the induction of airway hyper-reactivity (AHR) caused by TDI (toluene-2,4-diisocyanate), a model known to induce immune-mediated asthma in mice. Mast cells were also shown to be crucial for AHR, and the authors speculated about whether degranulation of mast cells induced by SP was a key mechanism; however, follow-up studies will be necessary to confirm the neuroimmune interaction occurring in this context [55]. Nerves and mast cells have been shown to interact closely in several tissues, including the skin and lungs. Recent work has uncovered a crucial role for the MrgrpX2 receptor in human mast cells (and MrgrpB2 in mouse mast cells) in detecting SP released from nerves to mediate mast cell degranulation (Figure 3 left, and Box 2).

Autonomic Neuroimmune Interactions in Asthma and Airway Inflammation

The parasympathetic nervous system interacts with immune cells through the action of ACh on muscarinic receptors to induce airway inflammation. Activation of muscarinic receptors promotes...
the release of several cytokines and growth factors that are involved in asthma and COPD pathology. During allergic airway inflammation, epithelial damage promotes reflex mechanisms by exposing vagal nerve endings in the submucosa to the airway lumen, leading to ACh release from vagal parasympathetic neurons. M1 receptor (M1R) activation on epithelial cells can induce leukotriene B4 (LTB4) release, stimulating neutrophil, eosinophil, and monocyte chemotaxis [56]. Muscarinic 3 receptors (M3Rs) on structural cells in the lung also play a proinflammatory role; genetic ablation of M3R prevents neutrophilic airway inflammation in response to cigarette smoke exposure [57]. Muscarinic agonists can also act on macrophage M3R and M5R, promoting both their chemotaxis and release of LTB4 [56] in the lung. Recent work also highlights a key interaction of neurons with ILCs at mucosal surfaces (Box 3). ILC2s were found to express high levels of the neuropeptide receptor NMUR1. Neuromedin U (NMU), a neuropeptide, whose main source is cholinergic neurons, acts on the NMUR1 receptor to increase ILC2 proliferation and cytokine production during helminth and allergen challenge in both the lungs and the gut [58,59,61].

The sympathetic nervous system also modulates immune cells via noradrenaline-mediated activation of β2 adrenergic receptors (β2AR) on ILCs and other immune cells [60,62–64]. β2AR agonists are potent smooth muscle relaxers and can inhibit immune cell recruitment, activation, cytokine release, and their survival [63]. Paradoxically, β2AR is also essential to induce a full asthma phenotype in mice because its activation on airway epithelial cells was necessary for inducing the cardinal features of asthma (inflammation, mucus production, and airway hyper-responsiveness) by regulating responses to IL-13 [64]. By contrast, β2AR signaling inhibited activation of ILC2s in mouse models of asthma and inflammation, leading to dampening of key cytokines that drive airway inflammation [60]. In this way, the autonomic nervous system has distinct mechanisms by which it can control airway immunity and responsiveness.

Neuroimmune Interactions during COPD
COPD, a progressive disease involving pulmonary inflammation and obstruction, causes an increase in M1R and M3R expression in airway structural and sputum cells as a result of prolonged ACh release. In a mouse model of COPD caused by exposure to cigarette smoke, treatment with tiotropium, a long-acting muscarinic antagonist, decreased the levels of several inflammatory mediators (IL-6, TNF-α, LTB4) in the lungs [65]. In a rat model of resistive breathing (RB) that models severe COPD, tiotropium used before induction of RB reduced inflammatory infiltrates and attenuated lung injury and protein in bronchoalveolar lavage fluid (BALF) [66] compared with untreated rats. Further studies will be necessary to clarify the neuroimmune interactions in COPD.

Neuroimmune Interactions during Lung Infections
Bacteria, viruses, and fungi cause lung inflammation, irritation (cough), and AHR. Neuroimmune interactions at the lung/air barrier surface also occur during lung infections. During S. aureus-induced lethal bacterial pneumonia, TRPV1+ nociceptors suppress immunity against this bacterium through CGRP release; this neuropeptide decreases the recruitment and surveillance of neutrophils that mediate killing of bacterial pathogens (Figure 3, left). As a result, nociceptor ablation increases survival, cytokine induction, and bacterial clearance in the lung [14]. Of note, CGRP is also expressed by pulmonary neuroendocrine cells (PNECs) in the lung in addition to sensory nerves. PNECs were found to play a role in regulating immune cell recruitment in the lungs [67,68]. Future work will be required to dissociate neural- versus PNEC-derived CGRP in different lung infections.

In influenza A viral infections, the sympathetic nervous system increases proinflammatory cytokines and exacerbates infection. Peripheral sympathectomy (using 6-hydroxydopamine) reduced
morbidities and mortality in lethal influenza A virus-induced pneumonia owing to decreased influx of monocytes, neutrophils, and NK cells, as well as to a diminished innate cytokine response [69].

Concluding Remarks and Future Perspectives

Barrier tissues including the skin and respiratory tract are constantly exposed to the outside environment as well as to threats to our health and internal homeostasis. These tissues are therefore heavily innervated, and the nervous system is poised to quickly detect insults and in turn recruit the immune system and communicate with it. This establishes crucial neuroimmune crosstalk that is necessary for maintenance of barrier function and host defense. Although there are some shared features between the lungs and skin in their overall protection strategy, it is not currently clear whether there are specific shared mechanisms between the lungs and the skin. Neuropeptide regulation of immune cells and neurogenic inflammation seem to be commonalities between the two barriers; however, specific similarities and differences in their functionalities are currently speculative. Moreover, the skin directly interfaces with the external environment, whereas the lung is a mucosal tissue, and each of the two barriers has distinct subtypes of immune cells and epithelial makeup. It will be interesting to see whether parallels in neuroimmune interactions between the two barrier sites emerge as the field progresses.

There are still many remaining questions to be answered (see Outstanding Questions) concerning neuroimmunity in the skin and respiratory tract, including the logic of why particular neurotransmitters and neuropeptides mediate immune cell proliferation or activation, whereas others suppress immune cell function. The role of neuroimmune interactions in barrier surfaces during development is another important area for future investigations. Defining the key molecular mechanisms underlying the communication between the immune and nervous systems could lead to novel therapeutic targets. Given that neurobiologists have already developed highly specific pharmacologic agonists and antagonists for many neurotransmitter receptors to treat neurologic diseases, these drugs may be repurposed to modulate neuroimmune signaling in the skin or respiratory tract, and this could open up exciting opportunities for possible treatments of inflammatory and infectious diseases.

Acknowledgments

The laboratory of I.M.C. is funded by National Institutes of Health (NIH) grants F31 AI138384-01A (to K.J.B), NIH/National Center for Complementary and Integrative Health (NCCIH) DP2AT009499 (to I.M.C.), NIH/National Institute of Allergy and Infectious Diseases (NIAID) R01AI130019 (to I.M.C.), and the Chan Zuckerberg Initiative (to I.M.C.). Select images were adapted from Servier Medical Art (www.servier.com).

References

38. Nakajima, S. et al. (2017) Staphylococcus aureus virulent PSM α peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe 22, 667–677
41. Song, Q.-R. et al. (2017) A bacterial toxin with analgesic properties: hyperpolarization of DRG neurons by mycobacteria. Toxins 9, E227
50. Song, J. et al. (2017) Mediating role of TRPV1 ion channels in the co-exposure to PM2.5 and formaldehyde of Balb/c mice asthma model. Sci. Rep. 7, 11926